Internal parasite management in sheep and goats is known to be difficult. Internal parasites are inevitable and can have a devastating effect on the hosts. Treatments are often not effective, due to widespread dewormer resistance; that is, internal parasites have developed resistance to dewormers and are not controlled by the drugs.

Still, producers have many strategies (“tools”) to help them battle this serious challenge. On the reverse side is an assessment to use in improving management of your own herd or flock. Use as many of these strategies as possible.

For more information and detailed descriptions of how to use the suggested management practices, visit www.attra.org to find these titles:

- Managing Internal Parasites in Sheep and Goats
- Tools for Managing Internal Parasites in Sheep and Goats: Sericea Lespedeza
- Tools for Managing Internal Parasites in Sheep and Goats: Copper Oxide Wire Particles
- Tools for Managing Internal Parasites in Sheep and Goats: Animal Selection
- Tools for Managing Internal Parasites in Sheep and Goats: Pasture Management
- Coccidiosis: Symptoms, Prevention, and Treatment in Sheep, Goats, and Calves
- Tips for Preventing Internal Parasites
- Tips for Treating Internal Parasites
- Tips for Working with a Veterinarian

Also, consult the American Consortium for Small Ruminant Parasite Control (www.acsrpc.org) and explore the topics.

The Langston University website offers a Web-based training with a chapter about managing internal parasites. It also provides an online tutorial showing how to conduct fecal egg counts. www2.luresext.edu/goats/index.htm

Enlist the help of your veterinarian in finding an effective dewormer and be sure to weigh your animals and dose correctly. Underdosing and overusing dewormers are two practices that have caused problems with dewormer resistance.
Internal Parasite Management Assessment

Source: ATTRA’s Small Ruminant Sustainability Checksheet, https://attra.ncat.org

YES NO

1. Are parasites kept at a level that does not affect animal performance?
 How do you know? __
 __
 How do you monitor the parasite load in your animals? ________________________________
 __

2. What practices do you use to reduce parasite problems and avoid the use of dewormers?
 □ □ Cull animals that get dewormed the most
 □ □ Use cleaner pastures (rest pastures, cut for hay, graze cattle)
 □ □ Graze diverse pastures
 □ □ Reduce stocking rate
 □ □ Avoid grazing pastures shorter than four inches
 □ □ Use browse and/or forages with high condensed tannin content
 □ □ Graze cattle or horses with goats or sheep
 □ □ Separate classes of susceptible animals
 □ □ Raise breeds and individuals with resistance to parasites
 □ □ Select rams or bucks with parasite resistance

3. What parasite control program do you use to reduce the use of dewormers and manage parasite loads? See www.acsrpc.org for information about these techniques.
 □ □ Visual observation to detect animals with parasite problems
 □ □ Use FAMACHA© (see www.acsrpc.org)
 □ □ Check fecal egg counts prior to and following treatment to monitor loads and check effectiveness of anthelmintics
 □ □ Change class of anthelmintic once resistance is noticed
 □ □ Strategic deworming just before kidding or lambing
 □ □ Deworm all new animals and check fecal egg counts seven to 10 days later to be sure there are no eggs in the feces
 □ □ Use Smart Drenching (see www.acsrpc.org)
 □ □ Deworm only those animals that need it
 □ □ Cull animals that need frequent deworming (more than two treatments per season for adults; less, as your flock or herd gets stronger)
 Other: list here__
 __

This work was supported by the USDA, NIFA Organic Research and Education Initiative (Project No. 2010-51300-21641).