SOIL HEALTH and DROUGHT

Barbara Bellows, NCAT Soils Specialist

National Sustainable Agriculture Information Service

Soil Health: Nature and Management

• Nature and soil characteristics
 – Local geology and climate determines soil type
 – Soil type determines natural water- and nutrient-holding capabilities

• Land management practices
 – Can decrease or enhance soil nutrient- and water-holding capabilities
 – These management changes may not be apparent for several years
Natural Soil Characteristics

- **Soil texture**
 - Soil mineralogy: sand, loam, clay, muck
 - Particle size
- **Soil profile**
 - Soil depth
 - Subsoil characteristics
- **Soil slope**
Soil Texture and Water

<table>
<thead>
<tr>
<th>Soil</th>
<th>Water</th>
<th>Absorbs water</th>
<th>Holds water</th>
<th>Drains water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandy soil</td>
<td>Good</td>
<td>Poor</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>Clay soil</td>
<td>Poor</td>
<td>Good</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Loam soil</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>Muck soil</td>
<td>Excessive</td>
<td>Excessive</td>
<td>Poor</td>
<td></td>
</tr>
</tbody>
</table>
Soil Profile and Water

- Characteristics of deep topsoils
 - Absorb and hold water and nutrients
 - Promote thick root growth able to reach water

- Subsoil characteristics
 - Clay, hard rock, or compacted subsoils restrict water entry and movement \(\rightarrow\) low water absorption
 - Gravelly or cracked rock subsoils allow excessive water to flow through the soil profile \(\rightarrow\) low water holding
Soil Slope and Water

- **Water absorption**
 - Limited by water flow on steep slopes
 - Limited by thin topsoils on steep slopes

- **Water retention**
 - Conservation practices slow water flow downslope
 - Conservation practices protect topsoil, enhancing soil’s water-holding capacity
Soil Water Conservation

- **Cropping practices**
 - Rotations with perennial grasses
 - Adds organic matter to soil
 - Minimum tillage
 - Cover cropping

- **Grazing practices**
 - Managed rotational grazing
 - Riparian area protection
Cropping Practices for Healthy Soils

• Add manure and crop residues to soil
 - Promotes growth of soil organisms
 - Builds soil organic matter
 - Enhances soil aggregation and tilth

• Use cover crops, minimum tillage, and mulches
 - Protects against erosion and runoff
 - Minimizes water loss through evaporation
Soil Organic Matter and Soil Organisms

- Soil organisms decompose organic matter and build soil humus
 - Increase nutrient availability
 - Increase water-holding capacity
- Soil organisms build soil tilth
 - Insect and earthworm burrows make soil porous
 - Fungi and bacteria build soil aggregates
 - Mycorrhizae enhance plant uptake of water and nutrients and create soil aggregates
Aggregated Soils

- **Enhance water availability**
 - Decreased soil crust formation, resulting in better water absorption
 - Increased water storage throughout the soil profile
 - Decreased leaching and evaporation

- **Enhance plant water uptake**
 - Facilitates soil water and nutrient movement
 - Facilitate root growth through soil profile
Practices to Protect Soil Life

- Use minimum tillage
 - Soil cover moderates temperature and protects against water loss by evaporation
 - Does not disrupt the habitat of soil organisms
- Add manure and crop residues to land to provide soil organisms with food and favorable growing conditions
- Minimize or eliminate use of synthetic chemicals to protect soil biological health
Soil Health Indicators

- Moderate to high organic matter
- Even distribution of nutrients
- Good water infiltration
- Minimal soil erosion
- Deep crop root growth
- Active populations of soil insects, earthworms, and microbes
Residues for Water Conservation

- Surface residues conserve soil organic matter
 - Feed soil organisms that build aggregates
 - Cool soil and slow organic matter decomposition

- Soil cover facilitates water infiltration
 - Cushions against raindrop impact and crust formation
 - Protects soil against runoff and erosion

- Soil cover decreases water evaporation
Windbreaks to Reduce Evaporation

- Hot winds blowing across soils and plants increases evapo-transpiration
- Tree shelter belts reduce winds and evaporation potential
- Choose windbreak trees that
 - Use water efficiently
 - Create minimum shade
 - Provide habitat for beneficial organisms
Stubble to Increase Snow Infiltration

- Effective in arid areas with winter snows
- To capture snowfall, cut stubble at alternating heights, perpendicular to the wind
 - Acts as windbreak to collect snow within fields
 - Residue cover facilitates infiltration of snowmelt
 - Increases the amount of moisture available to soils in the field
Plant According to Water Needs

• Plants have critical periods of water need
 - Leafy vegetables need water throughout the growing period
 - Root, tuber, and bulb crops need water when roots are enlarging
 - Fruit and seed crops need water at flowering and at fruit or seed set

• When possible, plant crops so their critical periods of water need coincide with times of normally wet weather
Plant to Enhance Water Availability

• **Time planting to avoid known dry periods**
 - Use fall-seeded crops that overwinter and take advantage of spring moisture
 - Time planting to harvest before dry periods
 - Plant short-season crops that produce yields before onset of dry periods

• **Time planting to correspond with know wet periods, such as spring or mid-summer rains**
Conserve Moisture During Planting

- To conserve moisture during planting
 - Till shallowly to minimize moisture loss
 - Plant seeds deeper, where soil is moist
 - Pack seed following drilling to close soil
Use Drought Resistant Crops

- Early-maturing, low water-use crops
 - Barley
 - Peas
 - Oats
 - Lentils

- When moisture is favorable, harvest crops for sale

- If drought reduces crop yields or quality, graze these crops to recover some of their value
Rotate to Build Soil Quality

• Rotate between annual and perennial crops
 - Deep rooted perennials can get water and nutrients that have moved out reach of annual plant roots
 - Fine roots of perennial grasses build soil aggregation and tilth

• Rotate cropping and grazing land
 - Aids soil recovery from compaction
 - May decrease weed competition
Avoid Water Competition Between Rotated Crops

- Choose appropriate cover crops and crop rotations
 - Know each crop’s water needs
 - Match with soil moisture availability

- Determine best time to cut or kill cover crops
 - Limiting cover crop growth reduces water depletion
 - Extending cover crop growth produces more residues while decreasing the potential for soil erosion and water loss through evaporation
Control Weeds to Conserve Moisture Availability

- Weeds compete with crops for soil moisture
- Wide spacing between plants provides roots with more area to obtain moisture from soil, but wide spacing
 - Reduces moisture-conserving canopy
 - Can increase weed competition
Weed Control Practices

- **Organic weed control**
 - Crop rotations and cover crops decrease weed pressure over time
 - Flaming, acetic acid, corn gluten meal

- **Herbicides for weed control**
 - Often used in minimum tillage - “chem till”
 - Preplant herbicides dry out soil
 - Soil-applied herbicides need moist soil to be effective

- **Harm to soil organisms and soil tilth** is usually **less** from herbicides than from tillage
Tillage and Compaction

- Tillage and heavy equipment use compacts soils
 - Tilling or driving equipment on wet soils compresses them and forms clods
 - Repeated plowing at the same depth forms plow pans

- Tillage degrades soil aggregates
 - Disrupts soil organisms that form aggregates
 - Allows heat to breaks down organic gels and glues
Tillage and Moisture Loss

• Tillage increases moisture loss by evaporation
 - Exposes moist soil to drying forces of sun and wind
 - Reduces residues that protect against evaporation

• Soil moisture loss increases with tillage passes and tillage depth
 - Most moisture is lost on the first pass, with approximately \(\frac{1}{3} \) to \(\frac{1}{2} \) inch additional loss with each tillage pass
 - Deeper tillage increases moisture loss
Tillage Equipment and Evaporation

As tillage decreases residue cover, it increases water evaporation from soil.

Minimum till
- Undercutter (v-blade)
- Rodweeder
- Chisel with sweeps
- Cultivator with harrow
- Disc
- Moldboard

Most residue cover/least evaporation

Least residue cover/most evaporation
Minimum Till Practices

• Killed mulch
 - Used with cover crops
 - Crop planted or transplanted into killed cover crop

• Chem till
 - Uses herbicides to kill weeds
 - Often involves use of GMO crops
Minimum Till Trade-Offs

- **Killed mulch**
 - Cover crop needs sufficient moisture and time for growth
 - Suitable for organic production

- **Chem-till**
 - Soil applied herbicides are less effective when soil is dry
 - Not suitable for organic production

- All minimum tillage practices retain moisture, slowing soil warm-up in spring
Killed-Mulch Tillage Tools

- Stalk pullers pull stalks, leaves residues
- Uprooter-shredder-mulchers uproot and shred stalks, then inject them into the soil
- Undercutters sever plants below crown, then flatten residues
- Roll-choppers flatten plants and cut stems perpendicularly
- Flail choppers shred stalks behind picker
Minimum Tillage Alternatives

- Minimum till practices are not suitable for areas with cold and wet winters
 - Surface mulches prevent wet soil from drying and warming in spring
 - Cool, wet soils cause seed rot and poor root growth

Zone or ridge tillage

- Seeding zone tilled and raised
- Allows the seed zone to warm up and dry out
Frost Tillage

• Soil tilled in winter when frost is less than 4” deep (But these weather conditions may not occur every year.)

• Produces a rough soil surface
 - Encourages moisture infiltration
 - Reduces potential for soil compaction

• Early tillage allows for earlier spring planting
Rangeland Health Indicators

- Biological soil crusts
 - Composed of bacteria, algae, and fungi
 - Enhance water infiltration and water-holding capacity of soils

- Even distribution of vegetation, residues, and organic matter across the landscape

- Minimal soil surface loss or degradation
Grazing Practices for Healthy Soils

• Graze short-term on small paddocks
 – Forces even grazing across paddocks
 – Results in an even distribution of plant residues and manure
 – Reduces bare spots and compaction from lounging

• Rest paddocks between grazing periods
 – Permits forage regrowth and enhances forage diversity
 – Allows soils to recover from compaction
Rotating for Forage Persistence

<table>
<thead>
<tr>
<th></th>
<th>Grazing</th>
<th>Short term</th>
<th>Long term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short term</td>
<td></td>
<td>Effective use of rapidly growing forages</td>
<td>Force use of unwanted forages</td>
</tr>
<tr>
<td>Long term</td>
<td></td>
<td>Minimum impact on young forage, slow growing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>forage, or wet soils</td>
<td></td>
</tr>
</tbody>
</table>
Riparian Protection

- Exclude or limit animal access
 - Designate water crossings
 - Provide alternative water systems
 - Place minerals, shade, and water away from streams

- Protect vegetation on riparian soils
 - Plant grass and trees
 - When upland vegetation is sparse, exclude animals from riparian areas to prevent overgrazing
Riparian Protection Benefits

- Enhances water recharge
- Reduces flooding by absorbing rainfall, then slowly releasing water into streams
- Protects water quality by limiting nutrient and pathogen movement into streams
- Protects plant and wildlife habitat
Summary

- Manage your soils to reduce impacts of drought
 - Return organic matter to the soil
 - Minimize soil compaction
 - Protect soil organisms
 - Protect against runoff and erosion

- Reduce water loss from evaporation, runoff, and weed growth
Illustration Credits

<table>
<thead>
<tr>
<th>Slide Title</th>
<th>Photo courtesy of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td>USDA Natural Resources Conservation Service</td>
</tr>
<tr>
<td>Natural Soil Characteristics</td>
<td>USDA Agriculture Research Service Image Gallery</td>
</tr>
<tr>
<td>Soil Slope and Water</td>
<td>USDA Natural Resources Conservation Service</td>
</tr>
<tr>
<td>Soil Water Conservation</td>
<td>USDA Natural Resources Conservation Service</td>
</tr>
<tr>
<td>Cropping Practices for Healthy Soils</td>
<td>USDA Natural Resources Conservation Service</td>
</tr>
<tr>
<td>Soil Organic Matter and Soil Organisms</td>
<td>Tom Bruns, Department of Plant and Microbial Biology, University of California-Berkeley</td>
</tr>
</tbody>
</table>
Illustration Credits (Cont.)

<table>
<thead>
<tr>
<th>Practice</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregated Soils</td>
<td>USDA NRCS Soil Quality Information Sheets.</td>
</tr>
<tr>
<td>Practices to Protect Soil Life</td>
<td>Illinois Natural History Survey</td>
</tr>
<tr>
<td>Residues for Water Conservation</td>
<td>Joe Lauer, University of Wisconsin Short Course</td>
</tr>
<tr>
<td>Windbreaks to Reduce Evaporation</td>
<td>USDA Natural Resources Conservation Service</td>
</tr>
<tr>
<td>Stubble to Increase Snow Infiltration</td>
<td>USDA Natural Resources Conservation Service</td>
</tr>
<tr>
<td>Plant to Enhance Water Availability</td>
<td>Marilyn Bria, Department of Geography, Michigan State University</td>
</tr>
<tr>
<td>Conserve Moisture During Planting</td>
<td>USDA Photography Center</td>
</tr>
</tbody>
</table>
Illustration Credits (Cont.)

<table>
<thead>
<tr>
<th>Practice</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Drought Resistant Crops</td>
<td>USDA Natural Resources Conservation Service</td>
</tr>
<tr>
<td>Rotate to Build Soil Quality</td>
<td>USDA Natural Resources Conservation Service</td>
</tr>
<tr>
<td>Avoid Water Competition Among Rotated Crops</td>
<td>USDA Natural Resources Conservation Service</td>
</tr>
<tr>
<td>Control Weeds to Conserve Moisture Availability</td>
<td>USDA Agriculture Research Service Image Gallery</td>
</tr>
<tr>
<td>Tillage and Compaction</td>
<td>Carter and Gruenewald Co., Inc.</td>
</tr>
<tr>
<td>Tillage Equipment and Evaporation</td>
<td>USDA Natural Resources Conservation Service</td>
</tr>
<tr>
<td>Minimum Till Practices</td>
<td>USDA Natural Resources Conservation Service</td>
</tr>
</tbody>
</table>
Illustration Credits (Cont.)

<table>
<thead>
<tr>
<th>Minimum Till Trade-Offs</th>
<th>USDA Natural Resources Conservation Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Killed-Mulch Tillage Tools</td>
<td>Steve Diver</td>
</tr>
<tr>
<td>Minimum Tillage Alternatives</td>
<td>USDA Natural Resources Conservation Service</td>
</tr>
<tr>
<td>Frost Tillage</td>
<td>USDA Natural Resources Conservation Service</td>
</tr>
<tr>
<td>Rangeland Health Indicators</td>
<td>USDA NRCS Soil Quality Information Sheets</td>
</tr>
<tr>
<td>Grazing Practices for Healthy Soils</td>
<td>USDA Natural Resources Conservation Service</td>
</tr>
<tr>
<td>Rotating for Forage Persistence</td>
<td>USDA Natural Resources Conservation Service</td>
</tr>
</tbody>
</table>
Illustration Credits (Cont.)

<table>
<thead>
<tr>
<th>Riparian Protection Methods</th>
<th>USDA Natural Resources Conservation Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riparian Protection Benefits</td>
<td>USDA Natural Resources Conservation Service</td>
</tr>
<tr>
<td>Summary</td>
<td>USDA NRCS Soil Quality Information Sheets</td>
</tr>
</tbody>
</table>