
Soil Solarization and Biosolarization

Solarization

Imagine harnessing the sun's energy to destroy your enemies. Like Archimedes—the ancient Greek who used mirrors to concentrate sunlight to burn the Roman fleet—farmers can utilize the sun to destroy or disable insects, diseases, nematodes, and weeds in the field. The technique known as solarization consists of laying clear plastic mulch on moist soil. Solarization during the hottest months of the year, which in some areas can begin in midspring through early fall, can raise soil temperatures to levels that kill or debilitate many soil pathogens, insects, nematodes, weed seeds, and seedlings. The effect of solarization may

Flat solarization. Photos: Martin Guerena, NCAT

last many years, depending on how thorough the solarization was and how heavily the soil is tilled in following years. Solarization improves soil tilth and releases many nutrients—primarily nitrogen in the form of ammonium and nitrates, as well as calcium, magnesium, and potassium—to the crop.

Steps in solarization:

- Prepare the area by disking or tilling the soil. Break down the clods and make the surface as smooth as possible.
- Water the soil deeply to about 70% of water-holding capacity.
- As soon as you can reenter the field, cover the area with clear UV-resistant plastic.
- Plastic can be laid flat over large areas or in strips over beds.
 - Strip solarization on beds leaves the furrows out of the heating process; therefore, weeds will emerge once they get wet. Drip tape may be placed in the center of the bed before the plastic is applied for irrigation, once the solarization process is over and the crop is planted. With strip coverage, however, long-term control of soil pathogens and nematodes may be lost because pests in the untreated soil in the rows between the strips can contaminate and reinfest treated areas.
 - Flat solarization may have shallow beds or no beds. If beds need to be formed after flat solarization, it may bring up weed seeds, depending how deep the bed shaper goes. Flat solarization is recommended if the soil is heavily infested with soilborne pests or perennial weeds, because there is less chance of reinfestation by soil being moved to the plants through cultivation or furrow irrigation water.
- Bury the plastic edges in the soil to trap and keep in the heat.
- Leave the plastic in place for four to six weeks, depending on location, for deep full solarization effect. Soil texture may determine time needed for maximum benefit: clay holds more water and heat than sandy soils do.

Once solarization is occurring, make sure to repair any tears in the plastic with patching tape. If the wind lifts the plastic's edge, quickly rebury the edges to keep the heat and moisture in.

Drawbacks of solarization include the following:

- Keeping land out of production while solarization occurs.
- Removing and disposing of the plastic mulch. Until a strong, durable, biodegradable plastic is developed, farmers will have to rely on
 petrochemically produced polyurethane, which ends up in the landfill. Plastic used in flat solarization can be cut and folded into
 manageable pieces for reuse.
- Areas with high winds, too much rain, or fog may hinder solarization.
- Perennial weeds like nutsedge, field bindweed, Bermuda grass, or Johnsongrass are more difficult to control, especially in bed-strip solarization or on the edges of flat solarization.
- Beneficial microorganisms will also succumb to the high temperatures, but they do recover and eventually reestablish themselves.
- May have to inoculate with rhizobium if planting a legume.

How hot does the soil get during solarization? It depends on the soil texture and the amount of moisture the soil is holding. The sandier the soil, the less water it holds; therefore, the less heat is transferred. Clay soils hold more water than sand and transfer heat throughout the profile more readily. The following are photos of a simple 6-inch cooking thermometer used to monitor soil temperatures at the surface right under the plastic, at three inches deep, and at six inches deep. The location is in Davis, California, about 4 p.m. on July 16, 2015, with an ambient temperature of 93°F. Photo 1 shows the thermometer at 129°F on the soil surface right under the plastic sheet. At these temperatures for four weeks, all seeds and seedlings on the surface essentially cook and are non-viable. In Photo 2, the thermometer

reads 110°F at three inches below the surface, and in Photo 3, the thermometer reads 100°F at six inches below the surface. The weed seed bank in this profile is exposed to these high temperatures for longer periods than normal, affecting seeds' viability and germination rate (Vidotto et al., 2013).

0 °F 140

Biosolarization

Biosolarization combines solarization with anaerobic soil disinfestation (ASD). ASD creates

Surface temperature (1), temperature at three inches deep (2), and temperature at six inches deep (3). Photos: Martin Guerena, NCAT

temporary anaerobic conditions in the soil that encourage anaerobic microorganisms that break down available carbon sources, producing organic acids, aldehydes, alcohols, ammonia, metal ions, and volatile organic compounds that are toxic or suppressive to soil pests and diseases (Momma, 2008; Huang et al., 2015; van Agtmaal et al., 2015; Achmon et al., 2017). The addition of organic amendments provides the carbon source responsible for this bio-pesticidal process. The amendments or biomass can be composted materials or non-composted biomass. Processed or composted biomass has lower available carbon; it introduces more beneficial organisms, and is usually recommended as a co-amendment. Non-processed biomass, such as disked-under cover crop or agricultural byproducts like pomace or manure, has higher available carbon, making it more effective in biosolarization. Five tons per acre of biomass application is recommended. The time needed for biosolarization is five to nine days in order to accumulate volatile fatty acids to inactivate weed seeds and soilborne plant diseases (Achmon et al., 2017; Momma, 2008). If agricultural waste is used, the finer the particles, the quicker the microorganisms can consume it. Incorporating the biomass deeply in the soil results in better fumigation effect deep in the soil's profile. Once the biosolarization is complete, the soil may need to re-aerate for at least a week after plastic removal before planting.

Advantages of biosolarization over regular solarization:

- · Recycles farm waste
- Shorter application period (five to nine days)
- Effective in cooler areas with less sunshine
- Can begin process immediately after disking under a cover crop
- · Improves soil quality with added biomass
- · Effective in deeper soil layers

The risk and costs of conventional fumigation for human safety and environmental health make solarization and biosolarization a safe, effective, and sustainable alternative in many parts of the country.

References

Achmon, Y., J.D.Fernandez-Bayo, K. Hernandez, D.G.McCurry, D.R. Harrold, J. Su, R.M. Dahlquist-Willard, J.J. Stapleton, J.S. VanderGheynst, C.W. Simmons. 2017. Weed seed inactivation in soil mesocosms via biosolarization with mature compost and tomato processing waste amendments. Pest Management Science. Volume 73, Issue 5, May 2017. p. 862-873.

Huang, Xinqi, Teng Wen, Jinbo Zhang, Lei Meng, Tongbin Zhu, and Zucong Cai. 2015. Toxic organic acids produced in biological soil disinfestation mainly caused the suppression of Fusarium oxysporum f. sp. Cubense. BioControl. February. p. 113-124.

Momma, Noriaki. 2008. Biological soil disinfestation (BSD) of soilborne pathogens and its possible mechanisms. Japan Agricultural Research Quarterly: JARQ. Vol. 42, Issue 1. p. 7-12.

van Agtmaal, Maaike, Gera J. van Os, W.H. Gera Hol, Maria P.J. Hundscheid, Willemien T. Runia, Cornelis A. Hordijk, and Wietse de Boer. 2015. Legacy effects of anaerobic soil disinfestation on soil bacterial community composition and production of pathogen-suppressing volatiles. Frontiers in Microbiology. July. https://doi.org/10.3389/fmicb.2015.00701

Vidotto F., F. De Palo, and A. Ferrero. 2013. Effect of short-duration high temperatures on weed seed germination. Annals of Applied Biology. September. https://onlinelibrary.wiley.com/doi/pdf/10.1111/aab.12070

Resources

Soil Solarization for Pests in Gardens and Landscaping. 2008. By J.J. Stapleton, C.A. Wilen, and R.H. Molinar. University of California Statewide Integrated Pest Management Program. http://ipm.ucanr.edu/PMG/PESTNOTES/pn74145.html

Soil Solarization – A Nonpesticidal Method for Controlling Diseases, Nematodes and Weeds. 1997. By Clyde Elmore, J.J. Stapleton, C.E. Bell, and J.E. Devay. Vegetable Research and Information Center. http://vric.ucdavis.edu/pdf/soil_solarization.pdf

This material is based upon work that is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, under award number 2013-51106-20970.

Beneficial and Pest Birds: Vertebrate IPM Tip SheetBy Martin Guerena, NCAT Agriculture Specialist • Published Sept. 2019 ©NCAT IP590 • Slot 614

Produced by the National Center for Appropriate Technology (parent organization to the ATTRA Project, www.attra.ncat.org) www.ncat.org • 1-800-ASK-NCAT